Show Mobile Navigation

Enter your email address:

Month Top Stories

Friday, June 14, 2013

,

Pollution-Control Technology With Titanium Dioxide - Another Bad Idea

HealthyAeon - 4:56 AM

In an effort to makes things better, we often make them worse. Titanium dioxide coatings, seen as promising for their role in breaking down airborne pollutants is just another "bad idea". Research by Indiana University environmental scientists shows that the air-pollution-removal technology used in “self-cleaning” paints and building surfaces may actually cause more problems than they solve.

The study finds that titanium dioxide coatings are likely in real-world conditions to convert abundant ammonia to nitrogen oxide, the key precursor of harmful ozone pollution.

Moreover, they're likely to be manufactured using nanotechnology which has been conclusively linked to lung inflammation and damage.

“As air quality standards become more stringent, people are going to be thinking about other technologies that can reduce pollution,” said Jonathan D. Raff, assistant professor in the School of Public and Environmental Affairs at IU Bloomington and an author of the study. “Our research suggests that this may not be one of them.”

“Photooxidation of Ammonia on TiO2 as a Source of NO and NO2 under Atmospheric Conditions” is being published by the Journal of the American Chemical Society and is available online.

Research published last year in ACS' journal, Environmental Science & Technology, found that children may be receiving the highest exposure to nanoparticles of titanium dioxide--a source of concern with regard to its potential health and environmental effects -- in a wide range of consumer goods.

The researchers calculate that, in areas where the titanium dioxide technology is used, ammonia degradation could account for up to 13 percent of the nitrogen oxides in the immediate vicinity. This suggests that widespread use of the technology could contribute significantly to ozone formation.

The findings are timely because the Environmental Protection Agency is developing stricter regulations for ground-level ozone, a primary component in photochemical smog. The pollution is linked to serious health problems, including breathing difficulties and heart and lung disease.

Ozone is produced by reactions involving nitrogen oxides (NOx), which come primarily from motor vehicle emissions, and volatile organic compounds resulting from industrial processes. Equipping cars with catalytic converters has been effective at reducing ozone in urban areas. But different technologies may be needed to meet tighter air-quality standards of the future.

The need has sparked interest in titanium dioxide, a common mineral that is used as a whitening agent in paints and surface coatings. The compound acts as a photocatalyst, breaking down nitrogen oxides, ammonia and other pollutants in the presence of sunlight. “Self-cleaning” surfaces coated with titanium dioxide can break down chemical grime that will otherwise adhere to urban buildings. News stories have celebrated “smog-eating” tiles and concrete surfaces coated with the compound.

But Raff and his colleagues show that, in normal environmental conditions, titanium dioxide also catalyzes the incomplete breakdown of ammonia into nitrogen oxides. Ammonia is an abundant constituent in motor vehicle emissions, and its conversion to nitrogen oxides could result in increases in harmful ozone concentrations.

“We show that uptake of atmospheric NH3 (ammonia) onto surfaces containing TiO2 (titanium dioxide) is not a permanent removal process, as previously thought, but rather a photochemical route for generating reactive oxides of nitrogen that play a role in air pollution and are associated with significant health effects,” the authors write.

Raff, who is also an adjunct professor of chemistry in the IU College of Arts and Sciences, said other studies missed the effect on ammonia because they investigated reactions that occur with high levels of emissions under industrial conditions, not the low levels and actual humidity levels typically present in urban environments.

The findings also call into question other suggestions for using titanium dioxide for environmental remediation -- for example, to remove odor-causing organic compounds from emissions produced by confined livestock feeding operations. Titanium dioxide has also been suggested as a geo-engineering substance that could be injected into the upper atmosphere to reflect sunlight away from the Earth and combat global warming.

Further studies in Raff’s lab are aimed at producing better understanding of the molecular processes involved when titanium dioxide catalyzes the breakdown of ammonia. The results could suggest approaches for developing more effective pollution-control equipment as well as improvements in industrial processes involving ammonia.

April McCarthy is a community journalist playing an active role reporting and analyzing world events to advance our health and eco-friendly initiatives.

Source: PreventDisease.com


loading...

FREE subscription to Receive Quality Stories Straight in your Inbox by submitting your Email below

Email privacy 100% protected. Unsubscribe at any time.

0 comments:

Post a Comment